
Theor Chim Acta (1993) 84:413-421 Theoretica
Chimica Acta
© Springer-Verlag 1993

Where are embarrassingly parallel problems?
The atom-diatom quasiclassical reactivity

Antonio Laganfi 1, Osvaldo Gervasi 2, Ranieri Baragli 3, Domenico Laforenza a,
and Raffaele Perego 3

Dipartimento di Chimica, Universitfi di Perugia, 1-06100 Perugia, Italy

2 Centro di Calcolo, Universit~t di Perugia, Perugia, Italy

3 CNUCE, Pisa, Italy

Received October 1, 1991/Accepted February 7, 1992

Summary. The apparently embarrassingly parallel problem of calculating a
batch of quasiclassical trajectories to evaluate cross sections or rate constants has
been analyzed. The study shows that only an accurate evaluation of the
performance parameters and a consequent appropriate restructuring of the
computer code allows the achievement of high speedup and efficiency especially
when large calculations are implemented on massively parallel systems.

Key words: Quasiclassical reactivity - Atom-diatom - Reactive cross sections-
Parallel computing

l. Introduction

At the Meeting "Parallel Computing for Chemical Reactivity" held in Perugia
(Italy) in August 1990 several approaches to the calculation of reactive scattering
properties were described as embarrassingly parallel [1, 2]. This is due to the fact
that scattering properties are, in general, expressed as a sum over the appropriate
indexes of the square modulus of the detailed scattering matrix elements. These
are, usually, obtained via a time-consuming integration of different subsets of
differential equations resulting into an ensemble of naturally separable (substan-
tially uncoupled) computational processes. However, though appearing as an
embarrassingly parallel problem, scattering calculations cannot be efficiently
parallelized if a detailed evaluation of the parallel performance parameters and
an appropriate restructuring of the computer code is not carried out.

As discussed at the "Parallel Computing in Chemical Physics" meeting held
in Willowbrook (Illinois, USA) in July 1991, this is the case of classical
trajectory calculations. Significant difficulties have been encountered when paral-
Mizing Molecular Dynamics codes dealing with large molecular systems [3, 4].
More successful are quasiclassical calculations of reactive properties of small
systems [5]. To achieve such a result, however, we have carried out a detailed
analysis of the computational bottle-necks and a careful exploitation of the
potentially parallel features of the trajectory method. Goal of the paper is to
report the details of such an investigation.

To this end, after revisiting the main features of the quasiclassical trajectory
approach (Sect. 2) and the structure of the corresponding computer code (Sect.

414 A. Laganfi et al.

3), we introduce and discuss a few main performance parameters (Sect. 4). The
appropriate restructuring of the code based on the evaluation of these perfor-
mance parameters is discussed in Sect. 5. The final performance evaluation of the
restructured code is reported in Sect. 6.

2. The quasiclassical approach to atom-diatom reactivity

Though extensively described in the literature [6, 7], the main features of the
quasiclassical approach to atom-diatom reactivity are again outlined in this
section to facilitate the understanding of the potential parallelism of the code. A
quasiclassical approach starts from the assumption that molecular motions can
be treated by considering the nuclei as mass points obeying to the classical
mechanics and that the discrete nature of internal energy can be regained both
at the beginning and at the end of the calculation by merely imposing initial
values to correspond to reactant vibrotational eigenvalues and boxing final
energies. For a given value of the translational energy Err , the detailed cross
section from the reactant vibrotational vj to the product vibrotational v ' j ' state
is defined as:

;0' ;o 1 °RffvJ'vT"glgte'atr]~ = C d~l d{ 2 " " " d{kf~j~'/'(Etr,, ~l, ~=,. - - , {k) (1)

with C being a normalization constant and k being 5 for atom-diatom systems
when a proper choice of the reference frame orientation is made. In this case, the

variables are defined as:

~ = (1 - c o s 0°)/2

~= = ~ o/(2=)

43 = (b/bmax) 2 (2)

G = po/~

{s = q~°/(Zr0

with the superscript ,,0,, meaning the initial value. In the chosen reference frame
the three atoms lie on the z x plane, the angle 0 gives the orientation of the
diatom with respect to the z axis connecting the atom A to the diatom BC, the
phase angle ,/ determines the diatomic oscillator elongation while the initial
atom-diatom distance is chosen large enough to render the related interaction
negligible. These quantities fully determine the two position vectors WA and W c
(the third one We is uniquely determined by the choice of locating the axes
origin at the center of mass of the triatom). Initial values of moments are derived
from the atom-diatom relative velocity VA.BC and from the characteristics of the
diatomic rotation and vibration. To this end, the relative atom-diatom velocity
is expressed in terms of the initial collision energy Et,, the impact parameter b
(defined as the distance of the diatom center of mass from VA,SC whose maximum
value bmax is given by the largest impact parameter at which reaction still occurs)
and the angle/3 formed by the projection of VA,BC onto the x y plane and the y
axis. The other values to be supplied are the vibrational and rotational energy
(E~ and Eg respectively) as well as the angle q5 formed by the rotational angular
momentum of the diatom with the y z plane.

Atom-diatom quasiclassical reactivity 415

Once initial values of positions W and momenta P are worked out, the time
evolution of the system is calculated by integrating numerically the equations:

dWts OH c
dt ~P/,

dPx~ OH c

dt ~WI~

(3)

linking the time derivatives of positions and momenta to the partial derivatives
of the classical Hamiltonian [8] (HC):

HC = Z P~(-~-~ + V(W) (4)
• 234i

and I being either A or C and s indicating any of the three cartesian axes. The
curve connecting calculated position values is the trajectory followed by the
system during its evolution. Usually, the conservation of the total energy E and
total angular momentum J are not incorporated into the motion equations to
further reduce their number. Therefore, the conservation of these quantities can
be used as an a posteriori check of the accuracy of the numerical integration.

! . t ~ ! . t By assigning a given final classical state vcJc to the closest quantum state j ,
the detailed reactive cross section can be written as:

S~,~J'(~,r) 2 2 N~ "°~' : 7cb max N rCbmaxP~j.~,).,(E,,) = (5)

where N is the number of integrated trajectories and N~ '~v' is the number of
trajectories that starting from reactants in the vj state can be assigned to the final
state v)". Quite recently the detail of experimental measurements has led to the
determination of properties of oriented and aligned target molecules [9]. In this
case, b, q5 °,/~o and 0 ° are not independent variables being linked by relationships
ensuring the wanted orientation or alignment of the considered vectors.

More frequently, however, experimental quantities are less detailed than the
state-to-state differential cross section and, therefore, a further averaging of the
calculated probability is required. In many gas kinetics studies, for example,
what is actually needed is the temperature (T) and vibrational state dependent
reactive rate constant kv,~,(T) that is given by the following expression:

= (2 "] 3 / 2 e-e~/kr

k~,~,(T) \ ~ / I t'rC"~.A,oc,-SiZ~-~vet'T',j=o ~ (2j + 1) e- t) /kr

× dEtrE tr e-Etr/kTsv~'v'(Etr) (6)
0

where k is Boltzmann's constant,/tA,,c is the A + BC reduced mass, S~'~'(Etr) is
the degeneracy averaged detailed reaction cross section summed over final AB
rotational states and QvR(T) is the BC vibrotational partition function.

3. The structure of the computer code

On conventional computers, the code can be organized in three sections. The first
section is dedicated to input data and to calculate variables of common use

416 A. Laganfi et al.

throughout the code. This section exploits the different options for selecting the
energy distribution among reactants and works out the mass factors, conver-
gence and accuracy check variables, debugging flags and limits of the integra-
tion domain.

The second section iterates over the number of trajectories to be integrated
the necessary operations. The first operation of this section is concerned with
the generation of a string of pseudo-random numbers and its conversion into
validated initial values of the integration variables. The generation of the initial
parameters has to be strictly sequential to guarantee the reproducibility of the
results even when working conditions (e.g. the integration stepsize) vary. To
this end, the pseudo-random sequence is generated using a routine that from a
given seed generates a new seed and a random number in the interval 0-1. The
second operation of this section consists of integrating the twelve Hamilton first
order differential equations using a predictor corrector method started by the
needed number of Euler steps. The integration is carried out to a point where
one of the three internuclear distances is again large enough to consider the
process ended. The third operation of this section consists of working out the
product characteristics from the final value of the W and P vectors. To this
end, the motion along the diatomic internuclear distance is separated out to
recover the vibrational and the rotational energy of the product molecule as
well as its rotational angular momentum, vibrational phase and orientation.
This allows an update of the statistical indicators related to energy and vector
product distributions.

The third and last section of the code takes care of the final print-out of the
calculated distributions and of the evaluation and print-out of the reactive cross
section.

4. Performance parameters for parallel executions

The main goal for parallelizing a code is the achievement of a high computing
speed. To achieve a high speed the computing time has to be maximized while
reducing all waiting or communicating times. To this end, it is worth defining
here the following performance parameters: the speedup (S), the scaled speedup
(Ss) and the efficiency (E).

The usual speedup S is defined as the ratio between the time Ts needed to
run the application on a single processor and the time TF needed to run the
application in parallel on the wanted number of processors:

s r~
Te (7)

Obviously such a quantity does increase when ire becomes smaller. However,
though S has a simple definition, its actual evaluation may become unpractical.
As an example, for large programs Ts may be difficult to evaluate because they
are extremely large. It is also possible that the full program (including data)
does not fit into the node memory of a (distributed memory) parallel machine
or that the implementation of the program on a many processor machine (this
is particularly true for massively parallel distributed memory environments)
implies such a deep restructuring to make the two versions of the code com-
pletely different.

Atom-diatom quasiclassical reactivity 417

A more appropriate way of quantifying the gain in speed is to make use of
the so-called scaled speedup Ss defined as [10]:

s + p . P
ss (8)

s + p

where s is the time spent for running the sequential part of the code while p is
the time spent to run the parallel part of the code and P the number of
processors. The scaled speedup is measured by varying the number of nodes used
while keeping constant the number of processes assigned to individual nodes. As
a result, the scaled speedup is a measure of how the code scales when the number
of processes and the number of processors are proportionally increased (i.e. is a
measure of how close the execution time of a problem of size d on P processors
is related to that of size kd on kP processors).

The efficiency E is usually defined as:

S
E = - (9)

P

and is a measure of to what extent a processor is engaged in useful work
(maximum efficiency is 1).

The optimization of the speedup and efficiency when implementing an
application on a parallel architecture is mainly a matter of distribution of the
work among the processors. To do this, one needs to further define the two
quantities TR and Tw (the sum of the individual node running (tri) and waiting
(tw,) times, respectively). Waiting times are those spent in activities other than
computing (e.g. synchronization, communication, etc.). By expressing the time p
spent to run the parallel part of the code in terms of the individual node times:

p = tr i + twi = t,~ + t~ (1 O)

the time Tp spent by the code for running on a parallel machine can be expressed
as:

~tri + tw~ TR Tw
T ~ = s + p = s + = s + - F + - - (11)

; P P

establishing a relationship between the speedup and the total running TR and
waiting Tw times of the P processors.

5. The parallel restructuring of the trajectory program

As evident from the discussion of Sect. 3, the operation (or equivalently the part
of the trajectory code) that can be easily distributed among several processors for
parallel execution with little restructuring effort is the integration of the motion
equations. Once defined, in fact, the six initial position values and the corre-
sponding initial momenta (the generation of these values, as already mentioned,
has to be strictly sequential) the integration of the motion equations of each
individual trajectory is a fully independent process. Therefore, by adopting a
farm parallel model [11, 12], this operation could be distributed among the
worker nodes provided that for each trajectory the master takes care of deter-

. mining the initial values of the variables and distributing them to the workers.
However, such a simplistic organization of the code tailored on the embarrass-
ingly parallel structure of the trajectory approach, fails to guarantee high

418 A. Lagan& et al.

speedups. This is especially true when, as is frequently the case of scattering
calculations, a large number of trajectories is needed (N is typically of the order
of several thousands) and use has to be made of massively parallel architectures.

The time Te needed for a parallel execution is, in fact, directly proportional
to both s and Tw. Why an increase of s makes the computing time associated with
a simplistic parallel organization of the trajectory code dramatically large can be
easily understood. At the beginning of the trajectory loop, in fact, the initial
conditions need to be generated and validated. This amounts to a nonnegligible
fraction of the scalar time s. The fact that this calculation has to be repeated every
time a trajectory is started means that its actual contribution to the global s value
is N times that of a single trajectory. On top of that, the amount of data to be
sent to the worker processors to start the integration of the assigned trajectory,
though small, is not negligible. This contributes to make individual communica-
tion times (and as a consequence Tw) large especially when the number of nodes
to be served becomes high (with a consequent heavy contention of the network).
Both arguments apply also to the collection of the results once the trajectory
integration comes to an end. Actually, the amount of data sent back by a
trajectory for updating the statistical analysis is much larger than that of initial
values being concerned with several scalar, vector and matrix variables.

For these reasons, we restructured the code by suppressing or minimizing as
much as possible all the communications. For the initial conditions the choice was
made of incorporating into the section of the code allocated to the worker nodes
their generation and validation. Only the generation of the first seed of each
trajectory was kept at master level. Once generated, the seed vector (of dimension
N) is distributed to the worker processors. This has the advantage of relieving the
master from generating and validating initial conditions and limits the transmis-
sion between the master and the worker to a single integer number (the sequential
number of the trajectory to be integrated) while preserving the strict sequentiality
of the initial conditions generation. As a result, the sequential work is dramatically
reduced and turned into a parallel one.

As far as the results' return is concerned, we have been able to suppress the
return of individual trajectory results by performing a local (in-node) update of
the statistical indexes. Statistical indexes are collected only at the end of the
calculation of all trajectories to perform the global statistical analysis. A further
reduction of the transmission time has been obtained on the hypercube by
adopting for the data collection a dimensional collapsing algorithm [13].

As a result of the above restructuring, the communication times of the
different nodes became very similar. The differences (as shown by Fig. 1) amount

4

\ 2

0 R-
I

32
I

64
node

I

96 128

Fig. 1. The communication time increment (At)
plotted as a function of the node identity
number for a run of 4096 trajectories on a 128
node Ncube 2

Atom-diatom quasiclassical reactivity 419

to a few #s seconds for a run of 4096 trajectories on a Ncube 2 consisting of 128
nodes (on the average 32 trajectories per node) negligibly affecting the global
computing time (communication time is only 0.002% of the total parallel time p
being that for node 1 of 1.0000665 s).

6. P e r f o r m a n c e e v a l u a t i o n

After the program was restructured as discussed in the previous section, the
waiting time reduced basically to that needed for the dispatch of local statistical
indexes to the master processor. This made relevant the evaluation of the parallel
performance of the trajectory code as well as the extension of the calculations to
large batches of trajectories and highly parallel architectures. As already men-
tioned in Sect. 4, in these cases the scaled speedup is an appropriate performance
index. The scaled speedup calculated on an nCUBE/10 (a machine of the first
nCUBE generation) by running 16 trajectories per node (a total of 8192
trajectories on 512 nodes) is shown in Fig. 2. In this case, a scaled speedup of
15.95 for 16 processors and of 508.4 for 512 processors was reached. The
linearity shown by the logarithm of the scaled speedup when plotted as a
function of the number of processors (on a logarithmic scale) demonstrates the
perfect scalability of the restructured trajectory code.

The importance of using the scaled speedup is evidenced by the measurement
of the relative importance of the waiting time when running different batches of
trajectories per node. An example of the percentage of Te wasted as Tw when
running different numbers of trajectories (64, 128, 256 and 512 respectively) on
a fixed number of nodes (16 in the case of the figure) is shown in Fig. 3. As
clearly shown by the figure the percentage of Tw decreases when the number of
trajectories allocated to each node increases. This effect becomes increasingly
larger when the dynamical allocation (in the adopted farm model a new
trajectory is assigned to a node as soon as it is disengaged from calculating the
previous trajectory) is constrained by an increase of the granularity. In fact, the
dispatching of a subset of trajectories rather than a single one (granularity 1)
reduces the number of processes per node while making each process larger and
the node load less likely to be balanced. As a result, in spite of the fact that an
increase of the granularity reduces the communication frequency, the elapsed
time increases. This is already apparent in Fig. 3 where a more dynamical
assignment of the trajectories leads to a lower percentage of waiting time. A

2

o

0
-- I

I

2
[r

8 32
nodes

I
128

I
512

Fig. 2. The logarithm of the scaled speedup S s
plotted as a function of number of the
nCUBE/10 nodes used

420

20-

A. Lagan~, et al.

~10- ~_~-

64 128 256
trajectories

I
512

Fig. 3. The fraction of Te spent as waiting
time T w plotted as a function of the number
of trajectories run on 16 nodes

51G

"~ 48C

450
I
2

grain

I I
8 32

Fig. 4. Elapsed time measured for calculating
4086 trajectories on a 128 node Ncube 2
plotted as a function of the granularity
(squares). The result of implementing a SPMD
parallel version of the code is also reported as
a circle at the location of the equivalent
granularity farm

more direct evidence of the effect of increasing the granularity of the calculation
is shown in Fig. 4 where elapsed times for granularity 1, 2 and 4 are shown. In
the figure, the computing time needed for integrating a fixed amount of 4096
trajectories on 128 nodes is plotted (squares) as a function of the granularity
adopted. The figure clearly shows that the computing time increases linearly with
the granularity.

Further evidence for this can be obtained from elapsed times measured for the
implementation of the code based on the SPMD model [14]. In the SPMD model,
the whole sequential program is copied into all nodes with minor modifications.
This allows the node to open the input file, generate the appropriate subset of
initial conditions and integrate the related motion equations. Once the work is
completed, a library routine performs a global adding of the statistical indexes by
mapping an addition tree onto the hypercube. In our case, this means the running
of 32 trajectories per node. For this reason, our SPMD results can be compared
with those of a farm model at granularity 32. As can be easily seen from Fig. 4
where the SPMD result is reported as a circle in the location corresponding to that
of the farm having granularity 32, the performance of a SPMD parallel implemen-
tation is substantially aligned with the farm ones.

7. Conclusions

We have restructured for parallel execution a quasiclassieal trajectory program.
In principle, this application should fall in the class of the so-called embarrass-

Atom-diatom quasiclassical reactivity 421

ingly parallel codes. However, when large batches of trajectories are to be run
and use has to be made of highly parallel machines, very little speedup is gained
when adopting a simplistic parallel implementation based on the separation of
the trajectory integration and the dispatch of this program section to the worker
processors. To optimize the restructuring of the trajectory code, we have
calculated some efficiency parameters of the application to find out that compu-
tational bottle-necks to the parallelism can be eliminated by minimizing the node
waiting time.

To this end, we have restructured the application to minimize node commu-
nications by reducing the initial conditions and suppressing the collection of
statistical individual trajectory indexes. Results are returned only at the end of
the calculation. Only after such a restructuring, we have been able to record
impressive speedups using a farm model parallel organization. The analysis of
the performance parameters has also led to the conclusion that smaller granular-
ities guarantee higher speedups. In fact, in spite of the lower message passing
associated with higher granularities, the resulting larger load unbalance worsens
the performance. This has also been confirmed by the implementation of the
SPMD model that approximately performed (in our case) as the farm case
having an equivalent granularity.

Acknowledgments. Partial financial support from CNR (Progetto Finalizzato Sistemi Informatici e
Calcolo Parallelo) is acknowledged.

References

1. (1990) Proceedings of the Meeting Parallel Computing for Chemical Reactivity, Perugia, Italy
2. (1991) Theor Chim Acta 79
3. (1991) Proceedings of the Meeting on Parallel Computing for Chemical Physics, Willowbrook,

USA
4. Theor Chim Acta (this issue)
5. Laganfi A, Garcia E, Gervasi O, Baraglia R, Laforenza D, Perego R (1991) Theor Chim Acta

79:323
6. Bunker DL (1971) Methods Comput Phys 10:287
7. Clementi E (1985) J Phys Chem 89:4426
8. Marion JB (1965) Classical dynamics of particles and systems. Academic Press, NY
9. (1987) J Phys Chem 91

10. Gustafson JL, Montry GR, Benner RE (1988) SIAM J Scient Stat Comput 9(4):609
i 1. Helliot RJ, Hoare CAR (1989) Scientific applications on multiprocessors. Prentice Hall, NY
12. Protchard D J, Askew CR, Carpenter DB, Glendinning I, Hey AJG, Nicole DA (1987) Practical

parallelism using transputer array. In: Lecture Notes in Computer Science. Springer-Verlag,
Berlin, p 258

13. Baraglia R, Ferrini R, Laforenza D, Perego R, Laganfi A, Gervasi O (submitted) J Math Chem
14. Baraglia R, Ferrini R, Laforenza D, Perego R, Gervasi O, Laganfi A (1991) High Performance

Computing 2. In: Durand M, E1 Dabaghi F (eds) North-Holland, Amsterdam, 1991, p 17

